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We study the kinetics of irreversible random sequential parking of intervals of 
different sizes on an infinite line. For the simplest fixed-length parking distribu- 
tion the model reduces to the known car-parking problem and we present an 
alternate solution to this problem. We also consider the general homogeneous 
case when the parking distribution varies as x ~ 1 at x ~ 1 with the length x of 
the filling interval. We develop a scaling theory describing such mixture-deposi- 
tion processes and show that the scaled hole-size distribution ~(~), with ~ = xt ~ 
a scaling variable, decays with the scaled mass ~ as ~-~ exp(-const. (l +~) as 

~ oQ. We determine 'scaling exponents z and O, and find that at large times the 
coverage O(t) has a power-law form 1 -  O(t)~-t -v with nonuniversal exponent 
v = (2 -  0)/(i + ~t) depending on the homogeneity index ct. 

KEY WORDS: Random sequential parking; hole-size distribution; scaling 
behavior. 

1. I N T R O D U C T I O N  A N D  M A I N  RESULTS 

Genera t ion  of r a n d o m  configurat ions of hard objects by successive addi- 
tions is an  interest ing problem of statistical physics which appears natura l ly  

in an equi l ibr ium version and in an irreversible version. ") If the objects can 
move and  if the time between the successive addi t ions is large enough,  the 

system of hard-core particles can equil ibrate at cons tant  density and  the 
corresponding configurat ions will then be describable by equi l ibr ium 
statistical mechanics. O n  the other hand,  if the objects once inserted are 
c lamped in their positions, nonequ i l ib r ium configurat ions are generated. 
The irreversible process corresponding to the latter s i tuat ion is called 
r a n d o m  sequential  adsorp t ion  (RSA). RSA processes have been used to 
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model experimental situation in various fields ranging from ecology to 
chemistry and physics.(2) A number of related models have also been studied 
recently. (3) Understanding the kinetics of RSA processes is a challenging 
problem of considerable practical and theoretical interest. 

RSA processes usually begin from an empty volume and continue until 
the jamming limit, that is, until it i~ impossible to place further objects. 
Like many statistical mechanical problems, exact solutions for the jamming 
limit and kinetics of the RSA processes exist only in one dimension. (4) 
In higher dimensions most of the information come from numerical 
work.(5 7) Many studies have been performed on objects of the same size 
with spherical symmetry (hard disks, hard spheres, etc.). For  these cases 
it was first suggested by Feder (2) and later proven by Pomeau (8) and 
Swendsen (9/ that in any dimension d, the coverage Oa(t) close to the 
jamming limit 0d(oO) varies with time as O d ( o o ) - O a ( t ) ~ - t  -v with the 
exponent v = lid. Swendsen conjectured that this asymptotic behavior is 
universal for all isotropic RSA systems. However, there are numerical and 
analytical indications (7) that the Swendsen conjecture is not correct and the 
precise form of the convergence law depends on the shape and orienta- 
tional freedom of depositing objects, interactions between adsorbed and 
adsorbing particles, etc. 

Motivated by the above work, we look for the possible violation of the 
Swendsen conjecture in one-dimensional RSA of intervals of different sizes. 
The aim of the work presented here is to provide a general theoretical 
description of the evolution of the distribution of the hole sizes that results 
from random sequential parking of intervals on an infinite line. Such an 
extension of the RSA theory to a mixture of particles with a continuous 
distribution of sizes is not only of academic interest, since in many applica- 
tions the adsorbing particles are indeed polydisperse (e.g., the adsorption of 
latex spheres on silica). However, rather little progress has been achieved 
in the theoretical treatment of such mixture-deposition processes. Most 
results were obtained numerically or approximately. (lw12) In the one- 
dimensional case, analytical results can be found for mixture-deposition 
models.(13 is) Most previous studies of the 1D deposition of mixtures were 
focused on the determination of jamming coverages. (13'14) In a very recent 
paper, (Is) the kinetics of deposition of a two-component mixture of fixed- 
length and pointlike particles was investigated. From that paper (tS) and 
also from other work (1~ it follows that the Swendsen conjecture can be 
violated for mixtures and the long-time behavior is generally governed by 
the behavior of the parking distribution near a small-size cutoff. 

We now state our main results. As in ref. 15, we consider a parking 
distribution with zero-size cutoff, but we study the general homogeneous 
case when the parking distribution varies as x ~ 1 at x ~ 1 with the length 
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x of the filling interval. One can see that the coverage is complete, 
01(~)  = 1, and we will show that at large times the coverage follows the 
power law 1 - 01(0 ~- t -v with the exponent v depending on the parameter 

of the model and generally distinct from Swendsen's value v = 1. An 
important feature of random sequential parking with zero-size cutoff is 
that a typical hole size decreases to zero during the parking process. The 
vanishing of the typical hole size is analogous to the vanishing of the 
inverse correlation length for a system near a second-order phase transition. 
Thus, at long times, one might anticipate that scaling and universality can 
be invoked to describe the nature of the hole-size distribution. 

Our treatment is based on applying scaling to obtain asymptotic infor- 
mation about the kinetics of random sequential parking for a general class 
of models. We will argue that only a few details of the parking process are 
relevant in determining basic features of the hole-size distribution. Our 
approach parallels analogous developments in describing the kinetics of 
aggregation, coalescence, and fragmentation processes (see, e.g., ref. (16) 
and references therein). 

The rest of this paper is organized as follows. In Section 2 we define the 
random sequential parking model and write the corresponding kinetic equa- 
tions. For  the simplest fixed-length parking distribution, p(x)  = 6(x - 1 ), we 
solve these equations exactly. The solution reproduces all known results ~4) 
in a very simple manner. In Section 3 we consider homogeneous systems in 
which the parking distribution scales with the interval length as x ~- 1. 
We derive scaling solutions to the kinetic equations. The asymptotic 
forms of the hole-size distribution at small and large sizes are determined 
by the homogeneity index ~. In Section 4 we discuss the existence of 
scaling, describe exact results for two simple models with ~ = 0 and ~ = 1, 
and compare these results with scaling predictions. We show that for these 
models solutions are indeed dominated by scaling ones. We expect that 
this feature is generally true for all homogeneous models, although our 
method of constructing exact results is applied only for integer ~ values. 
Finally, in the Appendix we present details of the calculations of the hole- 
size distribution at large sizes. 

2. KINETIC EQUATIONS FOR R A N D O M  SEQUENTIAL 
PARKING ON A LINE 

Let intervals be adsorbed sequentially and irreversibly onto an infinite 
line. Let C(x, t) be the concentration of holes of length x at time t. Since 
the random sequential parking process takes place independently and 
homogeneously as a result of external sources, the evolution of C(x, t) is 
described by the linear integrodifferential equation 
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3- -C(x ' t )=-C(x ' t ) [ fo  ( x - z ) p ( z ) d z ] a t  

+ 2 dy C(y, t) dz p(z) (1) 

The first term on the right-hand side of Eq. (1) accounts for the loss of 
holes of length x (to be termed x-voids) due to their covering by intervals 
of length z (to be termed by z-mers) with z<x, while the second term 
accounts for the gain of x-voids due to covering of holes with length larger 
than x. 

First, we study the simplest car-parking problem, namely the covering 
of an infinite empty line by cars of identical length, p(x) = 6(x - 1). In this 
case, Eq. (1) becomes 

0 C(x,t) ( x - 1 ) C ( x , t ) + 2  dyC(y,t) at x > l  (2a) 
at + 1 

foo 
a C(x,t)=2 dyC(y,t) at x < l  (2b) 
at x+l 

One can observe that the obvious initial conditions 

C(x, 0 ) = 0  (3a) 

are not enough. An analysis of the model on a ring of some finite length 
L shows that C(x, O) = L 16(x- L). Hence, one sees that ~ dx xC(x, O) = 1. 
Therefore, on the infinite line we must use the additional initial condition 

lim dx xC(x, t) = 1 t~0 (3b) 

Proceeding with a solution to the kinetic equation (2a), it is natural 
to test the following ansatz: 

C(x, t)=A(t) e x p [ -  ( x -  1) B(t)] (4) 

at x >  1. The exponential form of the solution comes from the Poisson 
nature of the parking events. Initial conditions (3a) and (3b) imply 

A(t) 
A ( 0 )  = B ( 0 )  = 0, l im  ~ = 1 (5 )  
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Substituting (4) into (2a) yields the reduced system of the ordinary 
differential equations 

dA 2A dB 
~ -  = -~- e x p ( -  B), d t =  1 (6) 

Solving (6) subject to the initial data (5) gives 

A(t) = tZF(t), B(t) = t (7) 

where we have introduced the shorthand 

F( t )=exp  - 2  

Combining (4) and (7), one can compute the integral on the right- 
hand side of Eq. (2b) and then find the x-void distribution at x < 1: 

fo C(x, t) = 2 d~ rF(z) e x p ( - x r )  (9) 

From the exact solution (4), (7), and (9) we may obtain any feature 
of the car-parking process. For example, the time-dependent coverage 

fo 01(t) = 1 - d x x C ( x ,  t) (10) 

may be expressed as follows: 

01(t) = d~F(r)  (11) 

A simple analysis shows that O~(t) has the following asymptotic 
behavior at large times: 

exp( - 27) 
0 1 ( t ) = 0 1 ( ~ ) - - -  J-.. .  (12) 

t 

where 7 =0.577215... is Euler's constant and 01(~) is the coverage at the 
jamming limit, 01(or) = S~ dt F(t) = 0.747597 .... 

Thus we have reproduced known results for a fixed-length deposition 
model in a very simple manner; compare with the treatment of the same 
model by Gonzales, eta/. (4) An important observation is that our approach 
is not affected if the deposition of finite-component mixtures is considered. 
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Indeed, for such mixtures, i.e., for the deposition of particles of different 
sizes Lj and rate values Qj (here the index j numbers different species), 
the parking distribution becomes p(x)= Zj~I Qj6(x-Lj)  and after sub- 
stituting this parking distribution into (1) one can see that the kinetic 
equations for x-void distribution functions will still be of the form (2). The 
only change will be more terms on the right-hand sides, with coefficients 
involving various rates and with lower limits in the integrals involving 
various sizes. An analysis of these equations (which is not presented here) 
shows that in the ordinary situation when the smallest size of the mixture 
has the same order as other sizes the kinetics of deposition at large times 
is governed by the smallest-size species and this kinetics only quantita- 
tively differs from the one for the simplest fixed-length deposition model. 
In particular, Swendsen's conjecture is correct for such mixtures. In the 
anomalous situation when the least species has a considerably smaller 
size than all others, the deposition process proceeds on two distinct 
time scales. In the former stage, the smallest-size species may be con- 
sidered as pointlike and the coverage approaches to the jamming limit as 
01(oo)-01(t)~-et b exp(--at) and this convergence law is nonuniversal 
(i.e., the constants a, b, and c depend on parameters of the model). In 
particular, for the two-component mixture our method reproduces recent 
results. (15) In the latter stage, the dimension of the least species becomes 
important and the exponential behavior crosses over to a slower power-law 
approach _~ t -  1. 

3. SCALING SOLUTIONS TO THE KINETIC EQUATIONS 

As discussed above and also in recent studies, (1'' 12,15) interesting effects 
in the mixture-deposition kinetics are expected in situations when particle 
sizes differ significantly. Tarjus and Talbot (n) pointed out that kinetic 
behaviors of mixtures with a large number of species, approximated by a 
continuous distribution, may be also unexpected. We now combine these 
two sources of interesting deposition kinetics and consider mixtures with 
parking distribution functions p(x) being continuous and positive for all x 
in some interval 0 < x < l. It is difficult to make general statements about 
the solutions to the kinetic equation (1) with such parking distribution 
functions. Therefore we consider homogeneous distributions, p(x)~-x ~- 1, 
where e is the homogeneity index [the normalization condition 

dx p(x) = 1 implies that e > 0]. A basic reason for restricting ourselves to 
homogeneous parking distributions is that this choice includes most 
natural situations. Furthermore, the scaling ansatz reduces a two-variable 
problem to a single-variable problem, thus simplifying the description of 
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parking kinetics. Finally, a scaling solution is universal in that it is 
independent of initial conditions. 

The scaling ansatz for the hole-size distribution can be written as 
follows: 

C(x, t)~-s-~ (~--(t)) (13) 

where 

S(t)~_t --" at t>>l (14) 

is a typical hole size. It is assumed that this simple scaling picture becomes 
correct in the scaling region 

x ~  1, t>> 1, ~=x/S(t)=finite (15) 

As the precise form of the parking distribution we choose 

{~X ~ 1 at x <  1 
p(x) = at x >  1 

(16) 

A large-size cutoff is physically natural and cannot influence the behavior 
in the scaling region. 

The kinetic equation (1) for the homogeneous parking distribution 
(16) becomes 

x~+l fx ~ ~C(x ,  t )=  - - - C ( x ,  t ) + 2  dyC(y, t ) ( y - x f f  (17) 
~?t c~+1 

Here we assume x < l; the opposite case will be outlined later. Further, an 
error in the integral on the right-hand side of (17) [where ( y - x )  ~ must be 
replaced by 1 at y -  x > 1 ] is negligibly small in the scaling region. 

We now find the exponents 0 and z. Multiplying both sides of Eq. (17) 
by x t~ and integrating over x, we find the following equation: 

d ( r(~+l)r(~+l) 1 ) 
dtMB(t)= 2 F(c~+fl+2) c~+l m~+a+l(t) is) 

for the moments of the hole-size distribution 

M~(t) = dxxaC(x, t) (19) 
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In Eq. (18), F denotes the Euler gamma function. The moments Me(t  ) 
are connected with the moments m e of the scaling function by the obvious 
relation 

;5 Me(t  ) = S 1 +e-~ mt~, m e = d~ ~q~(~) (20) 

Choose now the exponent /~ in such a way that the numerical factor 
on the right-hand side of Eq. (18) vanishes, i.e., 

r ( ~ +  1)r(/~+ 1) 1 
2 (21) 

F(~ +/~ + 2) ~ +  1 

For this//=/3(~), Eq. (18) implies that Me(t  ) does not depend on t. Hence, 
we immediately find the exponent 0 from the relation (20), i.e., 

0 = 1 +/~ (22) 

with the exponent /3 defined from the functional equation (21). Observe 
that the exponent 0 depends on the parameter ~ of the model and does 
have a superuniversal value 2 as in aggregation and fragmentation pro- 
cesses. (16) This follows from the fact that the fraction of uncovered length, 

f o ~  t)",  S 2 - ~  _ t -zl2 o7 (23) 

approaches zero. Equation (23) implies that 0 < 2  and does not give a 
definite value of the exponent 0, unlike aggregation and fragmenta- 
tion processes, where the mass conservation implies 0=2 .  A simple 
analysis shows that the transcendental equation (21) has only one positive 
solution /~=/~(~) and /~<1  for all ~ > 0 ,  i.e., 0 = 1 + / ~  is actually 
smaller than 2. We also mention three points: (i) /~ decreases when 
increases; (ii) / / = 1 - ~ + ( 2 ~ 2 / 3 + 4 7 2 - 2 - 6 7 ) c ~ 2 +  ..- at ~ 1 ;  and 
(iii) /~=(-3+xfi -7) /2=0.5615288. . .  at c~=1, i.e., for the flat parking 
distribution p(x)  = 1 for x < 1. 

In order to determine the second exponent, we insert the scaling 
ansatz (13) into the kinetic equation (17). This allows one to separate the 
dependence on x and t into two scaling equations 

- 1 + ~  q5 + 2 dq tffq~(t/+ ~) (24a) 

dS 
S - ' - 2  - - =  -~o (24b) 

dt 
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where e ) > 0  is the separation constant. From Eq. (24b) we see that a 
typical hole size has the time dependence 

S ( t ) ~ _ [ ( l + e ) c o t ]  -(1+~-~ at t>>l (25) 

Hence, we find the exponent z, 

z = ( l + e )  - I  (26) 

It is now possible to confirm the violation of Swendsen's conjecture for 
the present homogeneous parking problem. Actually, the coverage follows 
the power-law asymptotics 

1 - 01(t) = d x x C ( x ,  t ) = S l - ~ ( t ) m l  ~- t -(2-0)/(1+~) (27) 

with the exponent depending on the model parameter ~. Figure 1 plots the 
exponent v = ( 2 -  0)/(1 + e) versus e. Observe that in the interval 0 < e < ec 
(~c ~ 0.85), the exponent v increases from v = 0 to Vma x = V(~c) ~ 0.2198... 
and then at e > ~c the exponent v decreases to zero. 

Next we consider the properties of scaling solutions for small and large 
4. In the smalt-~ limit, if one assumes that the scaling moments rn~, m~_ 1, 
etc., exist, then one can expand the integral on the right-hand side of 
Eq. (24a). This gives 

~ (0q5 + ~d_~) _ ~1+~1+c~ - -  ~ + 2m=-2c~m~ 1-[-"'" (28) 

Solving Eq. (28) yields the small-~ expansion 

2m~ 2c~ma 1 
~(~) coO o~(O+l) r  at ~ 1  (29) 

Fig. 1. 
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Thus, up to a numerical factor the hole-size distribution decays as 
C(x, t)~-t - (1+~) / (1+~)  in the limit x<~ t l/(l+cQ 

In the large-~ limit, an analogy with similar scaling solutions in a 
variety of fields (see, e.g., refs. 16 and 17) prompts us to test a skewed 
exponential 

q0 (~ ) "~cons t .~ - aexp ( -b r  ") at r (30) 

as a possible asymptotic. By inserting (30) into (24a) we obtain a=O, 
b = c o - l ( 1  + ~)-2, and c =  1 +c~. So, 

~(~) _~ const. ~-0 exp[_co- t (1  + cQ 2~1+~] at 4>>1 (31) 

A more rigorous derivation of the large-r asymptotic behavior (31) is given 
in the Appendix. 

Finally, we describe the behavior beyond a large-size cutoff, i.e., at 
x > 1 in our units. This may be done for the general parking model with 
an arbitrary parking distribution p(x). The kinetic equation (1) becomes 

C(x, t) = - (x - L) C(x, t) + 2 dy C(y, t) 
+1 

f•'+l fo--X + 2 dy C(y, t) dz p(z) (32) 

where L = S~ zp(z) dz is the average size of parked intervals. 
To solve Eq. (32), we use the ansatz 

C(x, t) = A(t) exp[- - (x - L) B(t)] (33) 

By inserting (32) into (33) and solving the resulting differential equations, 
we obtain 

A(t)=t2F(t)exp[2 f~ ~-f (1-e- 'Y)  fYdz p(z)], B(t) = t (34) 

with F(t) given by (8). In particular, for the homogeneous parking 
distribution (16) we obtain 

C(x,t)=tZF(t)exp[! 2r(~,  x t ~ t ! ] e x p [ - (  - - - ~ ) t ]  (35) 

where F(c~, t )=So d~ z ~-I  e x p ( - z )  is the incomplete gamma function. 
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Next we compute the fraction of holes with sizes lying beyond a cutoff 

p( t )= dxxC(x,t)=(l+t)t-2A(t)exp[-(1-L)t] (36) 

In particular, at large times, for the homogeneous model (16) one has 

p(t)~-(l+t)t -2 ! 2 ) exp - 2 7 -  (37) 

4. E X I S T E N C E  OF S C A L I N G  

Here we discuss two crucial assumptions of the preceding analysis, the 
existence of scaling and the feature of a solution for arbitrary initial condi- 
tions to be dominated by the scaling solution at large times. We do not 
prove the existence of scaling rigorously, but show that the moments 
asymptotically approach a power law in accordance with the scaling 
behavior. First, remember that the moment M~(t), with fl a solution of 
(21), approaches some constant C at large times. Then the moment 
relation (18) gives 

M~_~_I(t)~_CtI2F(~+I)F([3-~ ) 1 ] 
F(f l+  1) ~ + f  at t~>l 

Iterating this process, we arrive at the asymptotic solution 

( F(c~+l)F[fi+l-j(c~+l)] 1 ) 
M~_k~ k(t)~--Ctk(k!) ' ~I 2 F~-fl+~---(-ffi~-~+-l~] ~ + 1  

j = l  

at t~> 1 (38) 

for a discrete set of equidistant index values fl - k(~ + 1 ). Assuming that the 
form of the moments for arbitrary index interpolates smoothly between 
moments defined on a discrete set, we find that Eq. (38) reproduces the 
asymptotic behavior of the moments for the system obeying scaling; cf. 
Eq. (38) with Eqs. (14) and (20). 

To justify that an arbitrary solution may be dominated by the scaling 
solution, it is instructive to investigate explicitly solvable examples. The 
simplest such case is the limit ~--*0 when the parking distribution (16) 
becomes p(x)= 6(x). Hence, an infinite line is subject to random cutting 
events. This model, called the random scission model, ~ is governed by the 
equation (0) -~+x C(x,t)= +2 dyC(y,t) (39) 
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A general solution to this equation was found many years ago (19) and 
reads 

C(x,t)=exp(-xt) C(x,O)+ dyC(y,O)[2t+t2(y-x)] (40) 

From (40) it can be seen that the scaling form exists if we keep xt = const 
while taking the limit x ~ 0 and t ~ ~ .  We find that the exact solution 
(40) approaches the scaling solution (apart from an overall constant 
factor), as expected: 

C(x, t)=At 2 e x p ( - x t ) ,  A = dy yC(y, 0) (41) 

The exponents 0 = 2 and z = 1 agree with our previous findings; see Eqs. 
(21), (22), and (26). 

It would be useful to obtain exact solutions for homogeneous parking 
distributions with e > 0 and to compare such solutions with the scaling 
ones. Some exact results can be found for integer a values, but we have not 
succeeded so far in solving Eq. (17) at arbitrary e, although the form of this 
equation is similar to some equations arising in the context of fragmenta- 
tion.(~8'2~ Here we concentrate on the homogeneous parking distribution 
(16) with the homogeneity index ~ = 1. We shall study the kinetics of park- 
ing subject to the monodisperse initial conditions C(x, O)=l-16(x-l), 
and for simplicity we shall assume that the initial size l is equal to the 
large-size cutoff of the parking distribution (16), l =  1. In this case the 
kinetics of covering is governed by the equation 

(42) 

We now find the moments Mn(t)= ~ dx xnC(x, t), with n a positive 
integer, following the method developed Charlesby ~22) for the random 
scission model; see also Ziff and McGrady/2~ First, we rewrite the moment 
relation (18) as 

d (n - /~)(n + fl + 3) 
dt M"(r 2(n + 1)(n + 2) mn+2(t) (43) 

where/3 = ( - 3  + x/i-7)/2 = 0.5615288 .... 
Using Mn(0)=  1 at all n (as follows from the monodisperse initial 

conditions) and iterating the moment relation (43), one can compute all 
derivatives of the moments at t = 0 and then obtain Mn(t) from the Taylor 
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2 /t series M.(t)= M.(O) + tM'.(O)/l ! + t M.(0)/2! + .... The final exact 
expression for the moments is 

M,,(t) = ~F[(n--/3)/2] _F[(n +/3 + 3)/2]'~-5 
VE(n+l)/2] VE(n+7)/-2-] 3 

(-t/2)J FEj + (n-fi)/2] FEj + (n + fl + 3)/2] 
x 

~=oZ-" j! FEj+(n+l ) /Z]F[ j+(n+2) /2]  

= 2F2 2 ' 2 ; 2 ' - -- 

where 2F2 is the generalized hypergeometric function. 
Turn now to the long-time limit. Considerable calculation yields the 

rather compact asymptotic result 

M~(t)-  F(/3+3/2)  F ( n + l )  (2t) (~ r (45) 
F(fl+ l) F((n+fl+ 3)/2) 

On the other hand, the scaling solution for this model has the form 

C(x, t)~- (2t) (1 +~)/2 ~[x(2t)i/2] (46) 

Putting this result into the definition for the moments and comparing with 
the asymptotic formula (45), we find 

ff v(/3 + 3/2) F(n+ 1) (47) 
d~ ~%o(~)- F(fl+ 1) F((n+ /3+ 3)/2) 

We see that in the long-time limit the solution relaxes to the scaling form 
(46). Moreover, we have computed the moments of the scaling function 
q~(~). Although Eq. (47) has been derived for integer n values, we expect 
that this equation is generally true. Hence, the scaling function can now be 
obtained by computing the inverse Mellin transform. This yields 

~b(~)= F ( / ~ + I )  \~-~J exp W_1/4 ~/2,-1/4 (48) 

where Wa, b is the Whittaker function. From this exact scaling solution one 
can find the large-~ behavior, 

~'(~)-F(~+3/2)2~-1/2~-1F(/3+ 1) ~ exp ( - 7 ~ )  (49) 
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So, for the flat distribution, ~ = 1, we again confirm the large-~ asymptotic 
behavior (31) and find numerical factors which remain undetermined in the 
scaling treatment. 

In closing we note that it is possible to apply this method for con- 
structing exact results in homogeneous models with other integer e values. 
However, the results become very cumbersome even for ~ = 2. 

A P P E N D I X  

Here we present a more rigorous derivation of the skewed exponential 
asymptotic behavior (31). The analysis which follows is based on the 
procedure described by Cheng and Redner. ~16) In the first step we compute 
the "scaled" moments mx for a discrete set of equidistant 2 values. Then we 
assume that the moments defined on a discrete set can be extended to all 
2. Finally, we find the scaling function by computing the inverse Mellin 
transform. 

We start with Eq. (24a) and convert it to a relation involving the 
moments of ~(~) by multiplying both sides of (24a) by Cx and integrating 
over all 4. Thus we obtain the linear recursion relation for the moments of 
the scaling function: 

ml+~+x=og( 1 + c ~ ) ( 2 _ / ~ ) [ l _ 2 F ( 2 + ~ ) F ( l + 2 ) ]  ' 
F(2 + ~ + 2) (A1) 

From this equation one can compute the asymptotic form of m). for a 
discrete set of equidistant 2 values. Because the large-~ behavior of the 
scaling function q~(~) corresponds to mx for large values of 2, we choose 
2 = k(1 + ~), with k a positive integer, iterate (A1), and find 

mk+k = m l  [e)( l+~)2]~ 1 --~-~ 
n = l  

x 1 r [ 1  + ( n +  1)(1 +c0]  (A2) 

Making use the asymptotics 

F[I +n(1 + ~ ) ]  

F [ l + ( n +  1)(~+ 1)] 

const'] I7 (1 

t l = l  

ocn ~-~ at n>>l 

oc l  

ocN ~ at N>>I 
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we t ransform (A2) into 

m k + ~ o c  [ c o ( l + ~ ) 2 ] ~ k ! k  -~ ~/(1+~) (A3) 

Deno t ing  # = k(1 + c~) and  employ ing  Stir l ing's  app rox ima t ion ,  we ob ta in  

m ,  oc [ c o ( l + ~ ) e - l # ] ~ / ( ~ + ~ ) #  ~/(1+~)-1/2 at  #~>1 (A4) 

N o t i n g  that  the scal ing momen t s  are  jus t  the Mel l in  t ransform of the 
scal ing funct ion [see the defini t ion (20)]  and  compu t ing  the inverse Mell in  
t ransform of m ,  given by Eq. (A4), we again  arr ive at  the a sympto t i c  
behav io r  (31). Thus  we conclude  tha t  the scaling funct ion q~(~) has the 
universal  a sympto t i c  form (31) at large ~, for a rb i t r a ry  homogeneous  
pa rk ing  dis t r ibut ions .  
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